3.1253 \(\int (B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx\)

Optimal. Leaf size=151 \[ \frac {2 B \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 B \sin (c+d x) \sqrt {\sec (c+d x)}}{5 d}-\frac {6 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d} \]

[Out]

2/3*C*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/5*B*sec(d*x+c)^(5/2)*sin(d*x+c)/d+6/5*B*sin(d*x+c)*sec(d*x+c)^(1/2)/d-6/
5*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec
(d*x+c)^(1/2)/d+2/3*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*co
s(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 151, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4221, 3010, 2748, 2636, 2639, 2641} \[ \frac {2 B \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {6 B \sin (c+d x) \sqrt {\sec (c+d x)}}{5 d}-\frac {6 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^(9/2),x]

[Out]

(-6*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*C*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (6*B*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (2*C*Sec[c + d*x]
^(3/2)*Sin[c + d*x])/(3*d) + (2*B*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d)

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3010

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x
_Symbol] :> Dist[1/b, Int[(b*Sin[e + f*x])^(m + 1)*(B + C*Sin[e + f*x]), x], x] /; FreeQ[{b, e, f, B, C, m}, x
]

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps

\begin {align*} \int \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {9}{2}}(c+d x) \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\\ &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {B+C \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\\ &=\left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x)} \, dx+\left (C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 C \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 B \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {1}{5} \left (3 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{3} \left (C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 C \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {6 B \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 C \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 B \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac {1}{5} \left (3 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {6 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 C \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {6 B \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 C \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 B \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.34, size = 97, normalized size = 0.64 \[ \frac {\sec ^{\frac {5}{2}}(c+d x) \left (21 B \sin (c+d x)+9 B \sin (3 (c+d x))-36 B \cos ^{\frac {5}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 C \sin (2 (c+d x))+20 C \cos ^{\frac {5}{2}}(c+d x) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{30 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^(9/2),x]

[Out]

(Sec[c + d*x]^(5/2)*(-36*B*Cos[c + d*x]^(5/2)*EllipticE[(c + d*x)/2, 2] + 20*C*Cos[c + d*x]^(5/2)*EllipticF[(c
 + d*x)/2, 2] + 21*B*Sin[c + d*x] + 10*C*Sin[2*(c + d*x)] + 9*B*Sin[3*(c + d*x)]))/(30*d)

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sec \left (d x + c\right )^{\frac {9}{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c))*sec(d*x + c)^(9/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sec \left (d x + c\right )^{\frac {9}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sec(d*x + c)^(9/2), x)

________________________________________________________________________________________

maple [B]  time = 6.84, size = 502, normalized size = 3.32 \[ -\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 C \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{6 \left (-\frac {1}{2}+\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )-\frac {2 B \left (12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{5 \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(9/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))
-2/5*B/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(12*Elli
pticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/
2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*
c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+3*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-8*sin(1/2*d
*x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(2*co
s(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sec \left (d x + c\right )^{\frac {9}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sec(d*x + c)^(9/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{9/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(9/2)*(B*cos(c + d*x) + C*cos(c + d*x)^2),x)

[Out]

int((1/cos(c + d*x))^(9/2)*(B*cos(c + d*x) + C*cos(c + d*x)^2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________